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SELF-SIMILAR FLUID DYNAMIC LIMITS
FOR THE BROADWELL SYSTEM

Abstract. This report discusses a new approach for the resolution of the fluid dynamic
limit for the Broadwell system of the kinetic theory of gases, appropriate in the case of
Riemann, Maxwellian data. Since the formal limiting system is expected to have self-
similar solutions, we are motivated to replace the Knudsen number e in the Broadwell
model so that the resulting model admits self-similar solutions in ý = x/t and then let
Z go to zero. The limiting procedure is justified and the resulting limit is a solution of
the Riemann problem for the fluid dynamic limit equations. A class of Riemann data for
which this program can be carried out is exhibited. Furthermore it is shown that for the
Carleman model the complete program can be done successfully for arbitrary Riemann
data.

§0. Introduction

The Broadwell system of discrete kinetic theory is given by the system of partial differ-

ential equations

Of 2 Of•S+ c =ao(f 3 f 4 +fSf6 -2fif2),

5t-- c-9 = aff3f4 +±fsf6 - 2fif2),

0f 3 0f 3
19 +C -- = a(f, f2 + fs f6- 2f3f4),& 19Y(0.1)

C9A 49 a(f, f2 + f5 f6 - 2f3 f4),

S+c(9f= (flf2 + f3f4 - 2f5f6),

Ot Cza- (flf2+ f3f4-2f5f6)

The model describes a gas of particles with identical masses moving along three perpendic-

ular coordinate axes with the same speed c. Results of a particular collision have the same

probability and only binary collisions are considered. The functions fi = fi(x, y,t), i =



1,... , 6 denote the densities of particles moving in the six allowed directions; a/2c is the

cross section for binary collisions.

For flows which are independent of y, z and for which f = f4 = f= f6 the above six

velocity Broadwell model reduces to the simpler form

+f 2~f-' = (f3' - flf2)

aT x ekF12

af f -7 l~ 2 - f2) (0.2)

where for simplicity we have set c = 1 and a = '; e the Knudsen number or "mean free

path" of the gas. As the "mean free path" is the distance between successive collisions, a

small mean free path means the gas becomes less rarefied and a "macroscropic" description

of the gas based on fluid dynamic Euler and/or Navier-Stokes equations should become

meaningful.

The problem of rigorously passing to the fluid dynamic limit has a long history. Here we

give a quick summary of relevant results. Additional references may be found in the book

of Cercignani [4] for work on the Boltzmann equation and the review paper of Platkowski

and Illner [12] with regard to research on discrete velocity models in the kinetic theory of

gases.

First within the realm of discrete velocity models the Carleman model does allow for

rigorous passage to the fluid dynamic limit. This was done in the work of Kurtz [11]. But

as the Carleman model does not conserve momentum it is perhaps a poor test case.

For the Broadwell model the basic result is due to Broadwell himself [1]. One begins by
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rewriting the system (0.2) as

O(f, +f24+4f3) +-•( -- f2)=0,

(fl - f2) + (h + f2) = 0, (0.3)

Next one makes the ansatz of travelling wave solutions fi = fi(O),f2 = f2(9), f3 =

f3(0), 0 = -!- where s will be the speed of the wave. Substitution of this ansatz into

(0.3) yields the system of ordinary differential equations

-s(f, + f2 + 4f3)' + (f, - f2)' = 0,

-s(f 1 - f2)' + (f + f2)' = 0, (0.4)

--SA "= (flf2 - f3).

We pose downstream and upstream positive, constant data (fi, f2, f3) -+ (fI±I f2, ff)

as -- ±oo which of course is consistent with (0.4) if and only if the data are Maxwellians,

i.e. fj f2 = f: 2 . Since s is a constant (0.4)1, (0.4)2 may be integrated from -oo to 0 to

yield:

-S(fl + f2+• 4f3) + (f, - f2) = -s(fý + f; + 4f;) + (f;- - f-),

-s(fi - f2) + (fl + f2) = -SW- ff ) + (fW T+ f-).

These two equations determine fl, f2 as functions of f3(0) and s. Substitution of these

functions into (0.4)3 will yield an autonomous scalar ordinary differential equation for f3

with precisely two equilibrium points at f± = (fj~f2)'/ 2 . Since such boundary value

problems must possess solutions it follows that a travelling wave solution exists. The value
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of s is found by integrating (0.4) from -oc to +oo:

-S(fs' + fs + 4(fj f2/2) +(fsý+ - f2)

=-s(fF + fT + 4(fTf)1/2) +(fT -_ f), (0.5)

-s(fj+ - f2+) + (fI+ + f2+) = -s(f7 - f) + ( + f-),

and solving the system (0.5) for s. These are just the Rankine-Hugoniot jump conditions.

Once the existence of a travelling wave is established, we let 6 --* 0+ and obtain

(fl, f2,fM)--+ (fý, fT,(fi-f2 )1/2 ) if X < St; (fl+,f2+, (fl+f+)1/2) i t

The limit function is a weak solution of the limiting fluid dynamic conservation laws

' (f, + f2 +4(ulf2)1/2) +I(fý -2)-0, (0.ý7x (0.6)
-(hl--fM)+a(fh +f)=0.a ax

This is because the limit function is piecewise constant possessing a jump discontinuity

across the shock x = st and across x = st the limit function satisfies the jump condition

(0.5). In fact the limit function is a solution to the Riemann problem (0.6) with piecewise

constant initial data
f= f (x< ) , f, = f+ (x > 0);

(0.7)

f2 =fT(x < 0), f2=f+(x>0).

Here we have used the usual definition of weak solution: a pair of bounded measurable

functions fl, f2 on (-oo, oo) x [0, o0) is called a weak solution of the Riemann initial value

problem (0.6), (0.7) provided that

I" (f + f2 + 4(flf2)1/2)"g + (f1 -- f 2 )-Ldxdt =0,

4+ (f, + f2) -7 dxdt
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for all C' functions 4, ?k with compact support in t > 0, -oo < x < oo and

lim f(x,t) = {f+ x > 0
t-0+[ f-, x < 0

Introduction of the macroscopic variables p = fl + 4(flf2) 1 /2 + f2, pu = f' - f2 shows

that the fluid limit equations (0.6), (0.7) can be written in the form of the Euler equations

ap + 4-(pu) = 0,
TX (0.8)

~(PU) + -(pgWu) = 0,

with g(u) ~[2(1 + 312)1/2 1] and Riemann initial data

p= p-(x <0), p = p+(x >0);

pu p-u- (x < 0), pu = pu++ (x > 0);

(0.9)

p u ý :=fS + 4(Sf.f)11 + f•,

It should be noted that the Boltzmann equation also possesses a travelling wave solution

for Maxwellian data which are close (Caflisch and Nicolaenko [2]). The data in [2] must also

be consistent with relevant fluid dynamic jump conditions which are the Rankine-Hugoniot

jump conditions for a shock wave in an ideal fluid.

In summary we see for Riemann data satisfying the Rankine-Hugoniot jump conditions

associated with the fluid dynamic limit equations (0.6) (or equivalently (0.8)) passage to

the fluid dynamic limit for the Broadwell model can be achieved (and with a smallness

assumption on the variation of the data for the Boltzmann equation also).
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What can be said regarding the fluid dynamic limit for arbitrary data or for that matter

even the more restricted case of arbitrary Riemann data?

For the case of smooth data Inoue and Nishida [10] have shown that one can pass to the

fluid dynamic limit for the Broadwell system on a sufficiently small time interval to yield

a smooth solution of the fluid dynamic limit equations. They show compactness of the

parametrized sequence {fU, f2, f! } satisfying the Broadwell system in a space that allows

passage to the fluid dynamic limit. This result does not cover the case when the solutions

of the limit equations have shocks.

In a work of complementary nature concerning again solutions without shocks, Caflisch

and Papanicolaou [3] show that a given smooth solution to the limit equations can be

approximated by a solution to the Broadwell system when E is small. The approximation

program was recently carried out at the level of solutions with shocks by Xin [15]. He shows

that given a piecewise smooth solution (with finitely many noninteracting shocks) of the

fluid dynamic-limit equations, there exist solutions to the Broadwell system which converge

asymptotically to the fluid dynamical solution as e --* 0+. Conceptually the approximation

program presupposes knowledge of a smooth solution in [3] or an admissible solution in [15]

to the underlying limit conservation laws (0.6) and is intended as a method to solve the

Broadwell system (0.2) based on solutions to (0.6). By contrast the compactness method

attempts to construct solutions of (0.6) as limits of solutions of (0.2).

In the research discussed here we continue in the spirit of the compactness issue. The

goal is to extend the success of Broadwell's original travelling wave idea to more general
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Riemann data, not necessarily consistent with the Rankine-Hugoniot jump conditions. The

idea is based on the following observation: Any system of conservation laws

OF(U) OG(U)
Ot + Ox

U :(-,oo) x(0,o)---RN ,F, G :RN*IRN,with Riemann data

U(,)<0 (0.10)
U+ >0

must possess space-time dilation invariance: For any positive constant a > 0, the change

of variable (x, t) --+ (ax, at) preserves both the equations and the initial data. Hence

solutions of Riemann problems are expected to depend only on the similarity variable

A= , that is U(x,t) = U(ý).

For example, if one was attempting to solve the Riemann problem for a system of

conservation laws by the artificial viscosity method

OF(U) OG(U) _ 
2U

at+ (0.11)

one might first consider substitution of the ansatz U(x, t) = U(C) into (0.11). But unfortu-

nately (0.11) does not possess space-time dilational invariance. For this reason Dafermos

[5] suggested a new type of "viscous" limit problem

OF(U) OG(U) O2U

t + O x t - ---- (0 .12 )

which does possess space-time dilation invariance. Substitution of U(x, t) = U(C) into

(0.12) yields the system of ordinary differential equations

-•F(U(•))' + G(U('))' = It (0.13)
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and (0.10) implies boundary conditions

U(-cc) = U-, U(+oo) = U+. (0.14)

In papers [51, [6] Dafermos and DiPerna showed that for N = 2 a large class of Rie-

mann problems for hyperbolic conservation laws may be solved as limits of solutions of

(0.13), (0.14) as e --* 0+. The program has been continued in the work of Slemrod [13],

Fan [8], and Slemrod and Tzavaras [14].

In the same spirit we easily recognize that the Broadwell system does not possess space-

time dilational invariance. Hence we are motivated to consider an artificial Broadwell

system
Ofa Of 1 2S+~ ~ 0- =(fl - fif•),

Oh_0f2 o - (f# _ ,A (0.15)
Ot Ox etX .

0f 3 = (1 l - •
(f 1f2-),

Ot y- f3

which does possess the desired space-time dilational invariance. (Of course the same obser-

vation is true for the Boltzmann equation and any of the standard discrete velocity models

in the kinetic theory of gases.)

We make the ansatz fl(x,t) = fi(ý), f 2 (x,t) = f2(ý), f 3 (x,t) = fh(ý), with A =

and substitute into (0.15) to obtain the system of non-autonomous ordinary differential

equations
- W W)f() = (fM - flf2)/t,

-(• + W)2'(0) = (fM - flf 2 )/C, (0.16)

-ýf' = (f, f2 - fi)/2c.
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Henceforth, we will use the notation f = (fl, f2, f3).

Since we wish f,(x, t) --ý ft for x < 0 as t --ý 0+ we impose boundary data

f(-oo) = f, f(+oo) - f+, j = 1, 2,3 (0.17)

where f = (f', f2, f;-) and f+ = (f+, f+, f+) are Maxwellian states: f' f• = ff 2 .

System (0.16), (0.17) is considerably harder to analyze than system (0.4) obtained from

the travelling wave ansatz. The reasons are obvious: (i) (0.16) is non-autonomous in the

similarity variable ý and (ii) (0.16) does i.ot possess any first integrals that allow to reduce

the number of dependent variables. It does however posssess a simplification. Since f:k: are

equilibria, we must have f() = - on (-oo, -1) and f(ý) = f+ on (1, oo). The boundary

conditions at ± = ±o0 are replaced by

f(-1-f-,f(+l-f+,(0.18)

and (0.16) need only be considered on -I < ý < 1.

The goal now is twofold. First, to construct solutions of the boundary value problem

(0.16), (0.18) for c > 0 fixed. Second, to show that as e - 0+ the solutions f' have

a limit which is a weak solution to the Riemann problem (0.6), (0.7) for the fluid limit

system. Remarkably the second part of this program is easier than the first. We exhibit

here only a class of Maxwellian data f, f+ for which solutions f exist to (0.16), (0.18)

for all - > 0. However, for any data f+ for which solutions f" exist for all - > 0, one

can extract a convergent subsequence fI -- I a.e. in (-o0, o0). The limiting function f
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is a local M--xwellian, f 3 = (fif2)1/2 a.e., and a weak solution of the Riemann problem

(0.6), (0.7). The proof is based on total variation estimates and use of Helly's theorem.

We note that the approach given here has some resemblance to a recent paper of F.

Golse [9]. In his paper Golse makes the self-similar ansatz for the Broadwell system

fj(X,t) = Fj(ý)/t , j = 1,2,3 (0.19)

where again • = - Substitution of (0.19) into (0.2) yields the system of ordinary differ-

ential equations
1- )F,(•)]' = (F3 - FiF2 )/1 ,

-[(i + 1)F 2 (ý)]' = (F3 - F1F2 )/6 , (0.20)

-[ýF3(ý] = (FIF 2 - F3)/2e ,

which differs from (0.16) in the fact that the left hand side of (0.16) has differentiation

followed by multiplication while (0.20) has the reverse. System (0.20) then has the same

property as (0.4) of possessing two first integrals. Golse exploits this property to show the

existence of a solution F1, F2, F3 of (0.20) analytic on -1 < ý < 1. The importance of the

result is that it displays explicitly the large time 0 (,) behavior of a class of solutions to

the Broadwell system (0.2). The solutions fl, f2, f3 of course do not possess space-time

dilational invariance and do not appear relevant to solving the Riemann problem for the

limit fluid dynamic system (0 6), (0.7).

The paper is divided into five section after this one. Section 1 reformulates the non-

linear boundary value problem (0.16), (0.18) and provides information on the behavior of

solutions to (0.16), (0.18). Section 2 provides the main result on the fluid dynamic limit
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problem: if for fixed Maxwellian initial data f = f- (x < 0), f = f+ (x > 0) (0.16), (0.18)

possesses a solution for all values of the Knudsen number c > 0 then the sequence of so-

lutions {ff(ý)} of (0.16), (0.18) possesses a subsequence which converges bounded a.e. in

-oo < x < oo, t > 0 to a solution of the fluid dynamic Riemann problem (0.6), (0.7) (or

equivalently (0.8), (0.9)). Section 3 provides a class of data for which (0.16), (0.18) does

indeed possess solutions for all values of the Knudsen number E > 0. The proof of existence

for all E > 0 is based on the contraction mapping principle and a continuation argument.

Section 4 applies the program originally described for the Broadwell system to the simpler

Carleman model of the kinetic theory of gases. For the Carleman model we show that for

all Riemann, Maxwellian data the fluid dynamic limit can be achieved. Finally Section

5 provides an appendix describing the behavior of non-homogeneous singular first order

equations; this appendix is used in Sections 3 and 4.

§1. The nonlinear boundary value problem.

In this section we derive various properties of solutions to the nonlinear boundary value

problem (0.16), (0.18), which for convenience we call (P,).

Since the underlying differential equations are singular, it is worthwhile clarifying what

is meant by a solution. The weak form of (0.16) takes the form:

-- 1)fl1 + f2 fi (r)dr = f12 Q(f(r))dr, (1.1)

(+ 1)f2 + f 2 (7)d7 = Q(f(7))d7, (1.2)

-_f3I12 + f 3(r)dr = 2 Q(f(r))dr, (1.3)
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for C1, C2 f [-1, 1], with the notation

Q(f) = f3 - ff2 (1.4)

used throughout for the collision operator.

Definition. The triplet f(C) = (f,(C), f2(•), fa(C)) defined for e[-1,1] is a solution

of the boundary-value problem (P,) if fi, f2, f3 EC[-1, 1] satisfy the integral relations

(1.1 - 1.3) for C1,2 4[-1, 1], and the boundary conditions fj(:l) = , j = 1, 2, 3.

It follows immediately that such a solution enjoys the properties:

(i) fhe C'[-1, 1), f2 eC'(-1, 1], fE CQ([-1,0) U (0,1]),

(ii) equations (0.16) are satisfied for -1 < ý < 0 and 0 < ý < 1,

(iii) the boundary conditions (0.18) are satisfied at • = -1 and • = 1.

Also, solutions of (P,) satisfy the balance of mass, balance of momentum, and entropy

production equations

-ý(fl + f2 + 4f3)' +(fl- f2)' = 0, (1.5)

-- (fl -- f2)' +(fl + f2)' =0, (1.6)

-- (fi enf, + f2 enf 2 + 4f3 enf 3 )' + (f, enf , - f2 enf 2 )'

-l(f2 - f f 2 )(enfi - enf f 2), (1.7)

for E (-1,0) and ý e (0, 1). The last equation is obtained upon multiplying (0.16a) by

(enfi + 1), (0.16b) by (enf 2 + 1), (0.16c) by 4(enf 3 + 1) and adding the resulting identities.
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The weak form of (1.5 - 1.7) reads

-ý(f' +f2 + 4f3)11 + (f, - f2)l + (fi + f2 +4f3)dk - 0, (1.8)

-(f, -•f2)11+(f,+f2)11+2 (fG -fM)<=-o, (1.9)

-ý(fjenf 1 + f2enf2 + 4f3enf3)16 + (fi nfi - f2enf2 )12+

1 f 4 2 (3(1.10)
j(f et(f_ + f 2 lnf2 + 4f 3enf 3 )dý 2 - ff 2 )(enff _ £nflf 2 )d 1

for •x, 2 e[-1,1].

The first lemma plays a key role in the analysis, as it will provide control on the shapes

of solutions of (Pe).

Lemma 1.1. Let f = (fl, f2, f3) be a continuous on 1-1, 1] solution of (0.16). Then

(i) Q(f(ý)) does not change sign on the intervals (-1,0) or (0,1).

(ii) Q(f(-1)) = Q(f(O)) = Q(f(+l)) = 0.

Proof. From (0.16) and (1.4), it follows that Q(f) satisfies the differential equation

dQ(f) = MO + -O+ p ) (f)

By uniqueness for ordinary differential equations, if Q(.f(ýo)) = 0 at some point Co e (-1, 0)

then Q(f) vanishes on the whole interval (-1,0). The same holds on the interval (0, 1),

hence (i).

In the integral relation (1.3) set 6 = $ 0 and j = 0. Then

f3 (0 f 3 (r)dr+ f Q(f(,r))dr3
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Since f3(ý), Q(f(f)) are continuous we let t - 0 and find f3(0) = f3(0) + -Q(f(O)), i.e.

Q(f(O)) = 0. Similarly, using (1.1) and (1.2) we obtain Q(f(-1)) = Q(f(1)) = 0. *

For the remainder of the section f = (fi, f2, f3) will stand for a solution of (P,) defined

on [-1, 1] and corresponding to some s > 0 and positive Maxwellian data

Q(f-)=Q(f+)=O, f,.f2,f3 >0. (M)

The components of f enjoy the regularity: f' eC[-1, 1lNC 1 [-1, 1), f2 e C[-1, 1]lC'(-1, 1]

and f3 e C[-1, 1] n C([-1, 0) U (0, 1]). Lemma 1.1 together with the form of the equations

(0.16) impose restrictions on the shapes of the functions fj, allowing only for the following

possibilities:

C 1 : Q(f) > 0 for -1 < <0 and 0 < < 1: In this case f, is increasing on (-1, 1), f2

is decreasing on (-1, 1), and f3 is decreasing on (-1,0) and increasing on (0, 1).

C 2 : Q(f) < 0 for -1 < < 0 and Q(f) > 0 for 0 < ý < 1: In this case f, is decreasing

on (-1,0) and increasing on (0,1), f2 is increasing on (-1,0) and decreasing on

(0, 1), f3 is increasing on (-1, 1).

C3 : Q(f) < 0 for -1 < ý < 0 and 0 < ý < 1: In this case f, is decreasing on (-1, 1), f2

is increasing on (-1,1), and f3 is increasing on (-1,0) and decreasing on (0, 1).

C 4 : Q(f) > 0 for -1 < ý < 0 and Q(f) < 0 for 0 < ý < 1: In this case fi is increasing

on (-1, 0) and decreasing on (0, 1), f2 is decreasing on (-1, 0) and increasing on

(0, 1), f3 is decreasing on (- 1, 1).

C 5 : Q(f) = 0 for -1 < <0 and/or Q(f) = 0 for 0 < < 1. In this case fl,f2,f3 are
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constant on the region where Q(f) = 0 and fl, f2, f3 have the behavior indicated

in Cases 1 - 4 where Q(f) > 0 or Q(f) < 0.

The next lemma provides L3 and total variation bounds for solutions of (P,).

Lemma 1.2. For data satisfying (M), the finctions fl, f2, f3 are positive on [-1,1].

Moreover, fl, f2, f3 are uniformly bounded from above and below by positive constants,

and of uniformly bounded total variation on [-1, 1]. Thc bounds depend on the data f+

and f- but not on e.

Proof. The cases C1 -C5 are analyzed separately:

C1 : Here, monotonicity implies 0 < f i f, < 5 fj+, 0 < f+ < f2 • f/-. Since Q Ž 0 on

[-1, 1], it follows that f3 does not vanish and

0 < (f•-f+)l/ 2 < (flf2)i/2 < f3 <_ max{f;',f3+} on [-1,1].

C2 : The shapes of the fi's in this case dictate

0</f- < f3 <f, 0 < min{f/',f +} < f2 < f 2 (0),

f,(0) < f, < max{f7,f•} on [-1,1].

Thus f2 and f3 are positive. Lemma 1.1 part (ii) states that Q vanishes at • = 0,

that is fC(0) f2(0) = f2(0), hence f, is also positive. Next, use the balance of total

mass obtained from (1.8)

-C(f, + f 2 +4f 3 )114_ 1 + (fl -f2)I',=_, + (f, + f. + 4f3 )d• = 0,
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to compute the total mass

j(f + f2 + 4f 3 ) dý = 2f + 2f+ + 4(f- + f+).

Use again (1.8) but this time on -1 < • • 0 to arrive at

f2(0) " (f, -+f2+4f3)d -2fT -4f;- +f1(0)< C,

where the constant C depends only on f-L but is independent of e. Since fi (0) =

f32(0)/f2(0), we conclude that fi and f2 are bounded from above and below by

positive constants depending only on the data.

C 3 : Here, 0 < f+ < f, 5 f', 0 < fj < f2 < f+. Lemma 1.1 part (ii) implies

Q(f(0)) = 0; hence, f3(0) is bounded by (fI-f+)'/ 2 and

0 < min{f;, f+} < f3 !5 (fl- f+)1/ 2 .

C.1 : The same argument as given in Case 2 applies here.

C 5 : If f = (fl,f2,f3) is constant on either -1 < ý < 0 or 0 < ý < 1 the monotonicity

of f in the region where f is non-constant immediately yields the desired bounds.

The above arguments show the stated uniform bounds. Since fl, f2, f3 may have at most

one maximum or minimum on [-1, 1J, it follows that f = (f , f2, f3) possesses uniformly

bounded total variation as well. .

Next, we examine the behavior of f near the singular points with the goal to estimate

the modulii of continuity of the components fi. To this end we use representation formulas
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and estimates for a singular linear ordinary differential equation that are derived in the

Appendix. Naturally, it is not expected that any H6lder or derivative bounds for the fi's

will be independent of e. To differentiate the dependences, for the rest of the section C,

will stand for constants that depend on f± and e, while constants that depend on the data

but are e-independent are denoted by C.

It was shown in Lemma 1.2 that

1
0<- 1< fh(W) < C j[-1,1], j=1,2,3; (1.11)

hence, as a consequence of (0.16),

If)i, W CCe(1 -,•

C
{ •• { C (-,1 (1.12)

1 '(0) K- C •'[-1, 1]\10}.-

Relations (1.12) provide derivative bounds away from the singular points • = -1, 0 and 1

respectively; they are improved in the following lemma.

Lemma 1.3. Let f = (fl, f2, f3) be a solution of (P,) with e > 0, corresponding to data

satisfying (M). There is p•, 1 < p, < oo, such that fl, f2, f3 are p,-integrable on [-1,1].

The exponent p, depends on the data f± and e, it is increasing as - decreases, and there

is e0 = eo(ff) > 0 such that for e < eo the exponent pe = oo. Moreover, the LP'-norms

of f', f2, f3 are bounded by constants that depend on f+ and e.

Proof. First, we work with the component f3 for • > 0 in a neighborhood of 0. Recall
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that f3 e C[-1, 1] satisfies

-f+ -f3f3 = f f2 on (0,1/2], (1.13)

f2(0) - fl(O)f2(O) = 0

With the purpose to use the results in the Appendix, note that p = f3 satisfies an equation

of the form (5.1) on (0,1/2] with 0 = -f3 and h = -flf2. Hypothesis (H1 ) requires

0(0) = -f3(0) > 0,

which is valid in our case, and

1 f01/2 1 f3(()- f3(0) I d( < oc (1.14)

which we proceed to show.

In the interval (0, 1) either Q(f) > 0, or Q(f) < 0, or Q(f) = 0. For concreteness, the

analysis is presented for the case Q > 0. (The case Q < 0 is treated similarly while the case

Q = 0 is trivial). Note that Q > 0 implies f3 increasing, f3 > (fif2) 1/2 and f3 > f3(0) on

(0, 1). From (1.13) we obtain the identity

f3(1/2) - f3(0) = j1/2 Q (

1 1/2 ( f3(•) fll(C)f2(•)) (f 3 (C) + V/f I(()f 2 (C))d(,

which, together with (1.11), yields

0 < 12 f3f(() f ) d( <_ C
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Using the fundamental theorem of calculus, (1.11) and (1.12), we deduce

0 /<12 f3(C)- f3(0)

= [1/2 f3(() - 1f/()f2(C) f 2 V7()f(•)- 2f(O) f2(O)

= 1 1/ 2 f3(() -- d 1/2)f2')d

0 • Jo 2 Vf7(t()f 2 (t()
C

e

Thus (1.14) follows and Hypothesis (H1 ) is satisfied.

Observe next that (5.6) reads in the case of (1.13):

[f3(,)- f3(O)] + f3(O) ýf3(o)/2e 1/2 (f3 (s) -f3(0) ew()-(a) ds
i f3(O)

= [f3(1/2) - f3(0)] (2) f3(°)/2e e-(t) -w(1/ 2 )

ýfa(O)/2c 1/2 ()f 2(s) - fl(O)f2(O) S_-f(O)/2c e,(•)_,(s) ds (1.15)

where

WW )_W(S) f= y(C)_.f (0) dc.
2c

The two first terms in (1.15) have the same sign. Thus using (1.15), together with (1.11),

(1.12) and (1.14), we find
1/2

0 < f3(,) - f3(0) < C, •f3(0)/2e + Cc .f3(0)/2 s--f3(°)/2e ds

fC,(ý + .f3(o)/2r) if f3(0) # 2e
C, cý(1 +I/nCI) iff 3(0)2• (1.16)

Equation (1.13) implies with the help of (1.11), (1.12) and (1.16) that for e [0, 1/2]

0 If3(0) = ý [(A - A - (fl f2 - f1 (0)h (0))]

<• C,(1+ I~2' -•' ) if f 3 (0)#2• (1.17){C (1 + Iln~I) if f3(0)= 2.
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This improves (1.12)3 for ý > 0 in a neighborhood of 0. Since f3(-C) satisfies an equation

of the form (1.13) as well, the same analysis shows that (1.17) in fact holds in a full

neighborhood of 0 and ultimately, upon combining with (1.12)3, for 4 e [-1,11. From

(1.17) we estimate the LP-norm of f3 on the interval [-1, 1]

(i) If f3(0) > 2. then IIf3IILoo < Ce.

(ii) If f3(0) < 2e then for p, < 1/(1 - f•() we have Ilf3IILP' <C,

Next we turn to the component fl. If we set p(ý) = f(1- C) then p satisfies an equation

of the form (5.1)

1 121
S+6lf2 (1 -4C)P(4)= Cf(--4 on (0,1/21,

p(O) = fj+ = f3 (1)/f2(1)

Hypotheses (HI - H 2 ) are satisfied with ,3 = -y = 1 and (5.12), (5.16) together with (1.11),

(1.12) yield

If<(4)I< C"(1 +11-I1f-+ ) iff+ #6 for Cc[-1,1] (1.18)
Cc (1 + I/n(1 - C)I) if f2+=

In turn, (1.18) implies that IIfjIILPe <_ C, for pý = oo in case f+ > -, and for any

p, < 1/(1 - 1f) in case f <e.

Finally, a similar argument, working with the function p(C) = f2(-1 + C), shows that

if ( I C )(1 + I(l + 1C-I) if f- ý# for e [-1,11 (1.19)

and that If2'IILP, < C, for p. = oo in case f7 > c, and for any p, < 1/(1 - L•-) in case

fj <e.
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We emphasize that for e < min{f', f+, f3(0)/2} the derivatives fj() are uniformly

bounded on [-1,1]. Since f3(O) is bounded from below by (1.11), there is a threshold

CO > 0 (depending only on f+) so that for e < e 0 the norms IIfiIIL- _< C•, j = 1, 2, 3.

Naturally, the bounds blow up as c --+. 0g

A useful consequence of the derivative bounds, the Sobolev-type inequality

Ifh(O)- f(¢)l - I fjfI(S)dS < IIfjIIiL,- Ic - W-

and Lemma 1.2 is the following corollary:

Corollary 1.4. The functions fl, f2, f3 are H6lder continuous with exponent a, = 1- ±PC

(a, = 1 if p, = c0). Moreover, the a,-H61der norms of fl, f2, f3 are bounded by constants

depending on f+ and e.

We close this section with a compactness lemma.

Lemma 1.5. Let e > 0 be fixed and let {fk} = { (fe, fk ,fk)} be a sequence of solutions

to the nonlinear boundary value problem (P,) taking on Maxwellian data fIk at • = ±1.

Assume the data are uniformly bounded from above and below independently of k, i.e.

there exist constants 0 < 6, M < oo so that 6 < f+k, f-k < M. Then there exist a

subsequence {fk' } of {fk } and a continuous function f, such that fk' .. f uniformly on

[-1, 1], and f satisfies (Pe) and admits positive Maxwellian boundary data.

Proof. From Corollary 1.4 we see that for each fixed j the sequences {fý}k>l lie in

bounded sets of Ca[-1, 1]. Since on [-1, 11 the embedding C* --+ CO (/8 < a) is compact,

21



there is a subsequence {f"'} and function, fi e C' such that fk' --+ fj in C). In particular,

fJk' - f and since the data of the sequence correspond to positive Maxwellians, the

boundary values f(±l) = f::= will be positive Maxwellians as well. Passing to the limit

k' --- oo in (1.1-1.3) we see that f is a solution of (Pe) (in the sense of the definition) and

thus enjoys all the additional regularity properties that were proved in this section. 1

§2. The fluid dynamic limit.

Let f+ be fixed positive Maxwellians and let {f t }e>o be a family of solutions of (Pe)

admitting f± as boundary data. The members of the family are extended to the whole real

line, by setting f"(ý) = f- for ý < -1 and f t (C) = f+ for C > 1. The extended functions

are again denoted by f'. In this section we show that the family of the extended functions

possesses a subsequence {If' } with e -- 0 which converges pointwise to a solution f of

the fluid dynamic Riemann problem.

Theorem 2.1. Let {fe},>0 be a family of solutions of (Pr) corresponding to data fT

satisfying (M). There exists a subsequence {f"n } with En -- 0 and a positive, bounded

function f of bounded variation such that f" -+ f pointwise on the reals. The function f

is a local Maxwellian, that is f3 = flf2 for a.e. C, and satisfies the balance of mass and

momentum equations

+f2 +4(flf2)1/2)+-(fU -f2) = 0, (2.1)

in the sense of distributions and in the sense of measures.
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Proof. Since Q(f+) = 0 the functions f' satisfy the equations (1.1-1.3) for any ý1, 2 in

the reals. Lemma 1.2 in conjunction with Helly's theorem implies that {ft} possesses a

subsequence {f`- } with -,, -- 0 which converges pointwise on [-1, 1] to a function f =

(fl, f2, f3) with positive, bounded components of bounded variation. The functions f'-

admit constant values f+ outside [-1, 1i; therefore, first f'" ---+ f pointwise on (-oo, o0),

and second f(ý) = f- for : < -1 and f(ý) = f+ for ý > 1.

Let now +,e [-1,1]. Equation (1.10) for the functions f'-, with the help of the

inequality

(a - b)(Cna - enb) > 4(a1/ 2 - bl/ 2 )2 , a, b > 0,

and the uniform bounds (1.11), gives

-t 2. , I n -< - n f; " f c n ) ( e n fJ s n - tn f I n f ; " ) d ý

<_ -4 (!i _~, (f~I nfen) 1/2 )2 dý <_ 0.

Passing to the limit En --+ 0, we find from the dominated convergence theorem

(f3 _ (ff 2)
11/ )2 dý = 0 (2.3)

and thus f3 = (fIf2)1/2 a.e. in [-1,1].

Let V(ý) be a Coo function with compact support in (-oo, oo). Equation (1.5) gives

0(f," + f + 4f 3 ) ( - (fr" - f;fn ) "(p ) dý = 0.

Letting En -- 0 and using once again the dominated convergence theorem, we obtain

S(f, + f2 + 4(f, f2)1/2) ( 3 V(ý))' _ (f, - f2) V(ý) dý = O. (2.4)
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Thus (2.1) holds in the sense of distributions and, because fi, f2 are of bounded variation,

it also holds in the sense of measures. Passing to the limit e,, -- 0 in (1.6), we show (2.2)

and complete the proof. g

With fl, f2 as above, define

Fj(Xt) =fl(-), F2(x,t) =f2(-), (x,t)E(-oo, oo) x (0, oo) (2.5)
t t

Clearly limi-o F,(x,t) = ff for x < 0, ft for x > 0, j = 1, 2. Further, a solution (F1 , F2 )

of the form (2.5) is a weak solution of (0.6) on (-co, oo) x (0, oc) if and only if (fi, f2) is

a weak solution of (2.1-2.2) on (-,)o,oco).

The equivalence follows from a transformation among test functions (Dafermos [7]).

Indeed, let ak(x,t) be a C' function with compact support on (-oo,oo) x (0,oo) and

define

o= j4 ( t,t)tdt (2.6)

The resulting function y e C' and has compact support on (-oo, oo). Conversely, any test

function 'p may be represented in the form (2.6) by choosing V, = V(x/t)a(t), with a(t)

a fixed C' function compactly supported in (0, oo) and satisfying f., a(t) t dt = 1. For

solutions of the type (2.5), the weak formulation for the first (say., equation in (0.6) takes

the form

/ (Fi + Fý + 4(Fi F2)1/2) Ot(X, t) + (FI - F2) 0.(x, t) dxdt

= (f, + f2 + 4(f, f2)1/2) 0( ,(ýt,t) tdt) + (fj -f2)( ,(,t) tdt)d<

00
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and the equivalence follows from the chain of identities.

§3. Existence theory for the nonlinear boundary value problem (P,)

The scope of this section is to develop an existence theory for the nonlinear boundary

value problem (P,), consisting of (0.16) and (0.18), for e > 0 fixed. Throughout, the

boundary data fl are assumed to be positive Maxwellian states satisfying (M).

First, some convenient notation is introduced. Let

b(f) = (-f2,-fl,2f3) (3.1)

and define the matrices
-f2 -f' 2f3

B(f)= 2 -fl 2f3 (3.2)
•f2 Lfl -f3

-( -1) 0 0
A()= 0 -V +- 1) 0J -1 < C < 1 . (3.3)
A()0 0 -Cl

Then Q(f) = ½b(f). f, and (0.16) may be written in the form

A( = 1-B(f)f. (3.4)

Next, let F = (F1 ,F 2 ,F 3 ) be a given solution of (P,) defined on [-1,1] and taking

boundary values F(±+) = F1 positive Maxwellian states. The analysis in Section 1 implies

that the functions Fj are H6lder continuous with exponent a,; moreover, for e < eo(F7±')

they are Lipschitz continuous. Any nearby solution f can be written as

f =F+p,
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with p = (P1,P2,P3) a perturbation. Since

Q(f) = Q(F + p) = Q(F) + b(F) p + Q(p) , (3.5)

p is a continuous function on [-1,11 that satisfies the equations

1 1

-A(-)p =B(F(ý))p + 9-B(p)p, (3.6)
e2

for ý E (-1, 0) and ý E (0, 1), and the boundary conditions

p(+l) = p± := f+: - F± . (3.7)

Since f±t: and F+ are Maxwellian states, (3.5) imposes the restriction

b(Fr)• p=- + Q(p±) = 0 (3.8)

on the data p+, and that in turn implies

B(F+)p+ + 1B(p+)p+ = 0. (3.9)

Our strategy for proving existence is to use a continuation argument on the set of data

f+ for which (P,) admits a solution. Any constant Maxwellian is a trivial solution of

(P.), corresponding to data with f+ = f-, and can serve as a point of departure for

the continuation argument. The key ingredients are: Lemma 1.5 and showing that for

prescribed F(ý) and f± with f+ - F± sufficiently small a solution of (3.6-3.7) exists. This

second objective is pursued here.

26



We seek for solutions of (3.6-3.7) as fixed points of the map that carries a continuous

function P = (PI, P2, P3 ) with boundary values P(±+) = p+, to the solution p = (p) ,p2,p3)

of the boundary value problem

A()p'= -B(F(ý))p + -B(P(ý))P(C)
6 2e (3.10)

p(±1) =p .

The study of this map is based on properties of linear boundary value problems near the

regular singular points 0 = 0, ±1, that are developed in the following subsection.

§3.1. The linearized boundary value problem

Consider the singular, linear, boundary value problem

1B(()p 1
A(C)p' B((C) + 1a(C) ,-1<C< 1, (3.11)

p(+l) =, p. (3.12)

The matrix B(F(C)) is defined in (3.2) and has H61der continuous entries on [-1, 1] with

exponent at, while G = (g 1, g2, g3) is a continuous vector valued function on [- 1, 1]. The

boundary data p± are assumed to satisfy

b(F+) .p + gI(+1) = 0
(3.13)

b(F-) .p- +g2(-1) = 0.

Note that the boundary value problem (3.10) fits into this framework with G = ½B(P)P,

and that relations (3.13) reflect the restrictions imposed by (3.8).

Our goal is to study the solvability of (3.11-3.12) subject to (3.13), and to establish

estn,,•tes for the solution p in terms of the data G and p±. For the estimates we use the
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sup-norm jj-II for scalar or vector-valued functions (depending on the context). The results

are summarized in the following Fredholm-alternative type of theorem.

Theorem 3.1. Assume the boundary data p* satisfy (3.13). Then,

(i) the boundary-value problem (3.11-3.12) admits a unique continuous solution on [-1, 1]

for any data p± compatible with (3.13), if and only if the only continuous solution of the

homogeneous problem
A(ý)p' 1 1B(r(ý))p

C (3.14)

p(+l) =0

is the trivial solution p = 0.

(ii) If the only continuous solution of (3.14) is the trivial solution, then the solution p of

(3.11-3.12) satisfies

sup Ip(ý)I < C( sup IG(ý)I + Ip+I + Ip-1). (3.15)

Proof. The proof is long and will be established in four steps. The main obstacle is the

presence of singularities at ý = -1, 0 and 1.

The first two steps are preparatory in nature and concern the behavior of solutions in

the neighborhood of one singular point. It is expedient to consider the auxilliary system

P1 11

-P'3= -P(O)P3 + _6() . ((pIp2) + h(ý) , (3.17)

taken on the interval [0, ½] under the list of hypotheses: a is a nonsingular continuous

matrix on [0,½]J, /3 a continuous matrix, y = (y 1 ,y 2 ), e5 = (,61,62) and H = (h1 ,h2 )
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continuous vector-valued functions, h is a continuous scalar-valued function, and W > 0 is

a H61der continuous, positive, scalar-valued function.

Step 1. Behavior of solutions near a singular point.

It is well known that for a linear homogeneous system of nonsingular ordinary differential

equations the solution operator is an isomorphism in the Euclidean space. We proceed to

study the analog of this result for a singular system with the structure of (3.16-3.17).

In preparation, consider (3.16-3.17) supplemented with the initial-boundary conditions

PI(O) = P10 , P2(0) = P20 , p3(a) = P3a, (3.18)

where the last condition is applied at some intermediate point a E [0, ½]. We show:

Theorem 3.2. It a is sufficiently small, there exists a unique continuous solution of

(3.16-3.17) that admits the data (3.18). It satisfies

((O)p3(0) - 4(0) . (pl(0),p2(0)) = h(O) . (3.19)

Proof. We apply the contraction mapping theorem to an equivalent integral formulation

of (3.16-3.18).

Let T(ý) be a fundamental matrix solution for

( ,= 1a- 1v w(q
q2/

with T(0) = I. The variation of constants formula applied to (3.16) implies

Po 1

j P( i (s)a(s)H(s)ds.
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where . stands for the C[0, a] sup-norm and the constant C is independent of a.

(ii) The map S carries the continuous function P3 to the pair (p1,P2) defined by!(( ) f
Pi = IW( P10 + ip(O) 1P 3 (s)'P- 1 (s)c- 1 (s)y(s)ds + 1V(ý) .

P2) (P20)

If now P 3 and P 3 are two continuous functions and (pl,P2) = S(P 3 ), (05,12) = S(P 3 )

their respective images, then

(i P) ='
2-1IP 1 0( ) (P3 -P73)(s)T_- (s)a-'(s)-1(s)ds,

and it follows easily that the map S satisfies the estimate

lip, - ,P11 + lJP2 - P211 --- CaIIP 3 - 5311 (3.24)

with the constant C independent of a.

Combining (3.23) with (3.24) we see that the composite map

S o T: C[0, a] x C[0, a] -. C[0, a] x C[0, a]

is a contraction, provided that a is sufficiently small. Therefore, S o T admits a unique

fixed point which is a solution of (3.20-3.21). Finally, (3.19) follows from relation (5.7) in

the Appendix. g

Consider now the homogeneous system of (3.16-3.17) with H = 0, h = 0. Let 0(j), 0(2)

and 0(3) be the solutions corresponding to the choices of data (P1o,P2o,P3a) equal to

(1,0,0), (0, 1,0) and (0, 0, 1) respectively. Then 0(1), 0(2), 0(3) form a fundamental set of

solutions for the homogeneous system (3.16-3.17). They also enjoy the properties:
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(a) For C # 0 the vectors 0(l)(C), 0(2)(0), 0(3)(0) are linearly independent.

(b) For C - 0 the vectors 0(,)(0), 0(2)(0), 0(3)(0) are linearly dependent and span the

two-dimensional space defined by (3.19) for h = 0.

The general form of a fundamental matrix for the homogeneous (3.16-3.17) is given by

[0(1) 0(2) 0(3)1-5

where each Oi is a column vector and S is a nonsingular constant matrix. From the form

of the general fundamental matrix, it follows that any fundamental set enjoys properties

(a) and (b).

Step 2. An a-priori estimate

Let now p = (pI,P2,P3) be a solution of (3.16-3.17) on (0, -] (not necessarily defined at

0), and introduce the notation rj = pj(½), j = 1,2,3. We show

Lemma 3.3. The solution p can be extended to a continuous function on [0, 1] that

satisfies (3.19) and the estimate
3

11Ilp •- C(Z IriI + IIHII + lihil), (3.25)
j=l

where 11 stands for the (vector or scalar) sup-norm on [0, 4].

Proof. The variation of constants formula yields from (3.16)

11 = _- pP(C)I 3(s)-(s)a-'(s)y(s)ds - 1U(ý), (3.26)

2 2 r2 /

where

U(•) = IW(•) l-(s)-'(s)H(s)ds. (3.27)

32



From (3.26) we obtain

IPI(ý)I + IP2(01)I C c(IriI + 1r2l + j P3(s)Ids + IU(ý)I) .(3.28)

Next, (3.21) gives for a -_

=2

+ ±I,(O) 2 e() (p,2s-~o1e (')w)ds + (321

where

U(W oO h(s)s±-(o1 (3.30)

Using the estimate

ew()w~) gf4' d( <eo V(C) (0) 1dC•C

the inequaulity

W's~(O) iSW1-ds < (O (3.31)

and (3.28), we deduce

IP3(ý)I Q (r 3 j + IU(ý)I) + CO"P(O)j(Ii) +p(sIso1d

+t cOP1(S) + IU2(s)IsS W(o)1ds

C E( ITA + MOO +hu)+ f 1P(k.
j=1
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Gronwall's inequality then implies

31
IP3(C)l g C(EZIrjI + IUJI + 0ll 1, < Cg . (3.32)

j--- 1

Therefore P3 is bounded and thus pl, P2 are Lipschitz. Lemma 5.1 then implies that P3(0)

has a limit as -- 0+ and the limiting functic. satisfies (3.19). As a matter of fact,

Lemma 5.2 implies that P3 is H6lder continuous on [0, ½] On account of (3.28) and (3.32),

we obtain
3

IpI(C)I + IP2(C)I < c(Z Ir1 + IJUlI + IUll)
j=1

Finally, (3.27), (3.30) and (3.31) imply

IIUII ___ CIIHII , I1,,11--- Cllhll

and the proof is complete. g

Step 3. The singular system (3.11)

From now on we focus on the system (3.11). First we explore the relation between (3.11)

and the auxilliary system (3.16-3.17) studied in Steps 1 and 2. Clearly, the latter captures

the local structure of the former in a positive neighborhood of 0 and thus describes the

behavior of solutions to (3.11) as C -- 0+. More is true: (3.16-3.17) captures the local

structure of (3.11) in the neighborhood of each of the singular points, not only as C --+ 0+

but also as C - 0-, as C --* 1- and as -- -1+. To see that, consider a solution

(PI(C), P2(C), P3(C)) of (3.11) and suppose we are interested in the behavior as C - 1-.

Performing the change of variables C = 1 - C, we deduce that the triplet

(ql((), q2 (C), q3()) = (P2(1 - •), p3(1 -- ( )1 P( 1 -
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satisfies for 0 < • < ½ a system of the form (3.16)-3.17) with V(() = F 2(I-() > 0 and a((()

a nonsingular matrix on [0, -]. Lemma 3.3 implies that p can be extended to a continuous

function as -- 1-, that the limiting value satisfies

b(F(+ 1)) p(+l) + gi(+1) = 0,

and that p can be estimated by

31

sup IP(WI :5 c(Z Ipi(+ý)j + sup IG(ý)I)
4E•[1,11 ,j=1 tE[½,1

Similar statements follow from analyzing the behavior as -- 0- and as - -1+. They

are summarized below:

Corollary 3.4. Let p be a solution of (3.11) on (-1, 0) U (0, 1). Then p can be extended

to a function that is H61dcr continuous on each of the intervals [-1, 0] and [0, 1] (though

not necessarily continuous at ý = 0) and which satisfies:

(i) At the singular points the conditions

b(F(+l))- p(+l) + gi(+l) = 0,

b(F(-1)) p(-1) + g2(-1) = 0 , (3.33)

b(F(0)) p(O±) + 93(0) = 0.

(ii) The estimates
3

IIPII < c( - IrjI + IIGII) (3.34)

where rj± = pj(±), j = 1,2,3, 11. 11+ stands for the sup-norm on [0,1] and I" i1- for

the sup-norm on [-1, 0].
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Consider now the homogeneous system (3.11) with G = 0. Choose a suffiently small and

assign data for (p,(0), p2(0), p3(a)) equal to (1,0,0), (0, 1,0) and (0,0, 1). From Theorem

3.2, we obtain a fundamental set of solutions 0i), 0+), 0+) on [0, 1]. On account of (3.33)

the functions 0+) take boundary values satisfying

b(F+). 0+)(+1) = 0, b(F(0)) -0)(0+) = 0. (3.35)

Similarly, by assigning data for (p,(O), P2(0), p3(-a)) equal to (1,0,0), (0,1,0) and

(0, 0, 1) we construct a fundamental set of solutions 0(1)' ,(0) and 0-), respectively, on

[-1, 0]. The boundary values of these functions now satisfy

b(F_) • 0-)(-1) = 0, b(F(0)) • 0-)(0-) = 0. (3.36)

By their construction and (3.35), (3.36),

(,)(0+) = 0-)(0-), 0+)(0+) = 0-)(0-), 0+)(0+) = 0-)(0-) = 0. (3.37)

Next, we turn to the inhomogeneous system (3.11) and construct a particular solution

on [0, 11 by solving (3.11) subject to the initial condition 0+(+½!)- 0. Note that the

resulting solution 0+ is bounded, continuous and takes values at ý = 0+, +1 satisfying

(3.33). Similarly, we construct a particular solution 0- on [-1,0] which satisfies '-(-½) =

0 and the conditions (3.33) at • = -1, 0-. Corollary 3.4 and the construction also dictate

110+11+ <5 OJIGJ+ , 110-11- <5 cIIaI- • (3.38)

The general solution of the inhomogeneous system (3.11) is given by

a 10,(1) (ý)+ a2 0(2) + a3 0(3)() + ¢-(W), -1 .5 <0
p(•) -(3.39){ b, 0)(ý) + b2X+)(ý) + b30+)(0) + 0+(0 0 < ý < 1
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with a,, a2 , a3 , b1 , b2 , b3 arbitrary constants.

Step 4. The singular boundary-value problem (3.11-3.12)

The boundary conditions (3.12) imply

a10•)(-1) + a202)(-1) + a30(-)(-l) = p- 0-(-),

blo+)(+I) + b20+)(+l) + b3-0)(+1) = p+ -+(+)

On the other hand, the requirement of continuity p(O+) = p(O-) = p0 dictates

a, 0(1)(0-) + a20()(0-) + a 3 0(3)(0-) = P0 - (0-),

b, 0(,)(0+) + b2 €0)(0+) + b3s0)(0+) = p - +)

In view of (3.37), it is equivalent to solve the inhomogeneous algebraic system

a I )(-1) + a2 0)(-1) + a303)(-1) = p- -(-1),

(a, - bl)0€5)(o-) + (a2 - b2)€5)(0-) = 0+(0+) - 0-(0-), (3.40)

b, 0+()(+1) + b20+)(+I) + b30+)(+l) = P+ - ¢+(+i)

This is a system of nine equations in six unknowns. However, because of (3.33) applied

to the functions 0+, 0-, the relations (3.35-3.36) and the compatibility conditions (3.13),

at most six equations are linearly independent. Solvability of (3.40) for any choice of the

data p± is equivalent to the homogeneous algebraic system having only the trivial solution,

which is in turn equivalent to the homogeneous problem (3.14) possessing only the trivial

solution p = 0 in the class of continuous on [-1, 1] functions. This completes the proof of

part (i) of the theorem.

To prove part (ii) observe that, if the homogeneous (3.40) has only the trivial solution,

then the solution (a,, a 2 , a3 , bh, b2, b3 ) of the inhomogeneous (3.40) satisfies the estimate

3

E jail + lbil <C[lp- - V)(-1)l + lo+(O+) - 0-(O-)l + lp+ - ?k+(+1)1]. (3.41)
j--1
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Moreover, evaluating (3.39) at ± = 4-, we deduce

3 3

Z lr+l + Irp-I < CZ ajja + IbjI . (3.42)
j=I j=1

Finally, combining (3.34) with (3.41), (3.42) and (3.38), we arrive at (3.15). *

§3.2. The nonlinear boundary-value problem

Next, we study the solvability of (3.6-3.7). Recall that s > 0 is fixed, F(ý) is a given

solution of (P,), while the data p+ satisfy the restriction (3.8). We show:

Theorem 3.5. If the only continuous solution of (3.14) is the trivial solution p = 0, there

exists a positive constant r such that for any data satisfying (3.8) and Ip+I + 1p-I < r the

boundary-value problem (3.6-3.7) has a solution.

Proof. Since our proof will rely on the contraction mapping theorem first define the closed,

bounded subset of the continuous functions

A = {P E C[-1, 1] : P(±1) = p+, IIPII <m}

where 11 stands for the sup-norm and m is a positive constant. Consider the map Fr

that carries P E A to the solution p of the boundary-value problem (3.10). In view of the

Theorem 3.1 and the compatibility conditions (3.8) the map F is well defined.

Our goal is to show that upon choosing m and r sufficiently small the map F : A -. A

and is a contraction. The resulting fixed point p E A will then be the claimed solution.

To accomplish that, observe that (3.15) implies

1IP1A < C(OP+I + IP-1 + 112B(P)PII)

< K,(Ip+I + lp-I + 11pII2) < K,(r + m2).
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On the other hand if P, P E A and p = '(P), F = (P) then using again (3.15) we

conclude

1ip - j51 • C11 B(P)P - 1B( ) Il

_• K2 (11P11 + IIPII)IIP - Pj5 _5 2K 2mjjP - T1j

Choosing m <minj, - } and then r < -- , we see that IlpIl < m and that Jr: A -+ A

is a contraction. .

§3.3. Nonexistence of eigensolutions

In order to apply Theorem 3.5, we need to check that the homogeneous boundary-value

problem (3.14):

- 1)P'1 = b(F(ý)) .p

-(V + 1)p'2 =b(F(ý)).p (3.43)
1

-ýp3= -- b(F(ý)) -p

with boundary conditions p(±l) = 0, does not admit any nontrivial continuous eigen-

,clutions. We have been unable to do that for a general solution F(ý) of (P,). (Note

however that such a result is true in the case of the Carleman system; see the next Sec-

tion.) Nevertheless, it is possible to rule out eigensolutions for certain classes of F(ý),

namely:

Lemma 3.6. In either of the cases:

(a) F(ý) is a constant Maxwellian state, or

(b) Q(F(ý)) >_ 0 for ý E [-'1 11,

the homogeneous problem (3.14) possesses only the trivial solution p = 0 in the class of
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continuous functions.

Proof. The proof is based on an energy identity for solutions of (3.43). Multiplying the

first equation in (3.43) by F 2pi, the, second by Fip 2 , the third by 4F 3p 3 and adding the

resulting equations, we obtain

S1)F 2 (12) + 1)F_(12) -4 PF3  ) = - (b(F) .p) 2

Integrating by parts and using (0.16), we arrive at

11 2 2F3)' + (F1 (2
2 - + 2 ) I (3.44)

+ Q(F) (• _p +(l_)p2 + p3 = (b(F).p2

We integrate (3.44) over [-1, 1] and use the continuity of p at • = 0 and the boundary

conditions p(±l) = 0 to conclude

1[ 1F 2 + ý, P2Fp)+L' (,•F2p, + •Fr, ±2F + )~~

Q( 1 -Cl 2 1 + 2) + (b(F) .p) 2dC =0.

Since F is a solution of P, the functions F, are strictly positive. Thus, in either case (a)

when Q(F) = 0 or (b) when Q(F) > 0 it follows that Pi = P2 = P3 = 0 on [-1, 1]. 1

Remark. Both conditions (a) and (b) are stated in terms of the unknown solution F of

(P.). However, since the shapes of the functions Fj necessarily fall under one of the cases

C, - C5 , it is possible to identify hypotheses on the boundary values Ft implying that

either (a) or (b) holds. Specifically:

(i) Condition (a) is equivalent to F, = Ft, j = 1,2,3.
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(ii) If F7- < Fj+, Fý- > F+ and F;- = F4 then Condition (b) is satisfied.

§3.4. Existence theorems for (P,)

We conclude this Section by stating two existence theorems for (P,), which follow from

the preceding analysis. The first applies to data that are close.

Theorem 3.7. There is a r > 0 so that if f+,f- satisfy (M) and If+ - f-I < r, the

boundary-value problem (P,) has a solution. The parameter r may depend on e.

Proof. Take F(ý) = f- and use Lemma 3.6 part (a) and Theorem 3.5. g

In this context the region of solvability may depend on - and thus disintegrate as e 1 0.

We next present a class of data for which this possibility is ruled out.

Theorem 3.8. Let f+ satisfy (M) and f" < f+, fý" > f+, f; = f+. For any e > 0 the

boundary-value problem (P,) has a solution.

Proof. A continuation argument is used. With the parameter p E [0, 1] let

f-(p) = f-,+ (Y) = (fj + p(ff+ - mf), fj (ff' f;).
f + A l

Observe that Q(f+(p)) = 0, f+(0) = f-, f+(1) = f+ and

if (9) < fl+(P) ,fý(Y) > f2+(9) 1 .f;'(P) = f3+(P) 1 0 < P< 1.

Define

C = {p E [0,1] : (P.) with data f-(p), f+(p) has a solution }.
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Clearly 0 E C. Furthermore:

(i) C is open.

0 is an interior point of C (in the relative topology), by Theorem 3.7. If now p E (0, 1)fnC

let F, be the corresponding solution of (P,) and consider (3.6-3.7) for F = F;,. By virtue

of Lemma 3.6 part (b) and Theorem 3.5 this boundary-value problem has a solution.

Therefore, p is an interior point of C.

(ii) C is closed.

This is an immediate consequence of Lemma 1.5.

We conclude that C = [0, 11 and in particular the boundary-value problem (P,) with data

f± has a solution. g

We emphasize that while the existence of solutions part requires the extra assumptions

f, • fi+, f;- Ž f+, f; - = f+, the fluid-dynamic limit part (Theorem 2.1) imposes no

restrictions on the data, aside from the natural requirement that f+ and f- are strictly

positive Maxwellians.

It is also interesting to see that the special data in Theorem 3.8 cannot be associated

with a nontrivial travelling wave solution as described in §0. The reason is simple. From

(0.4) we see a travelling wave would have to satisfy the limiting conditions
00 =

-s(fl + f2 + 4f3) + (f, - f2) 00 = '0

s(f - f2) ++(h + f2)I = .

For the data of Theorem 3.8 this would imply fj- = fj+, f2 = f+, f; = f+ which yields

an everywhere constant solution to (0.4).
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§4. The Carleman model

The Carleman model of the kinetic theory of gases consists of the system of semilinear

hyperbolic equations

a x C ( 4 .1 )
af2 9f2 1 2 2

Ot Ox C U -fl

It describes a system of two kinds of particles moving with velocities + 1 and -1 respectively

and colliding according to a nonphysical collision rule. As a model in kinetic theory it has

serious defficiencies; it conserves mass but not momentum. Nevertheless, the Carleman

model has generated some interest, because it enjoys part of the structure of the Broadwell

system and it allows for rigorous passage to the hydrodynamic limit Kurtz [11]. (See

Platkowski and Illner [12] for additional references and a discussion of relevant results).

In this section we explore the idcas of self-similar hydrodynamic limits for the case of the

Carleman model.

As before, a modified version of the Carleman is considered, admitting solutions of the

form f(•) = (f1(ý),f2(')), with ý = t, for Riemann dataf- = (f1",ff), f+ - (f+,f+)"

In the variable ý the system under consideration reads

1 Qlf) (4.2)

-V + W2 = 1IQM

C (4.2)
/(+1) = f:,

where Q(f) = f2 - fi. The data are assumed positive Maxwellians

fA, f2 >0 Q(f)= Q(f+) =. (4.4)
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We refer to this problem as (1Z,).

Our goal is to present a case where the analysis is simple and can be carried out com-

pletely, with no further restrictions on the data. Most of it parallels the analysis presented

for the Broadwell model, and our exposition will be sketchy only emphasizing the differ-

ences.

Definition. The pair f(ý) = (f1(ý),f2(ý)) defined on [-1,11 is a solution of (1Z,), if

fi E C[-1, 1]fnC'[-1, 1), f2 E C[-i,1]1nC 1 (-1,1] satisfy for ý1, ý2 E [-1,1] the integral

equations

-t- 1)f + f(r)dr = - Q(f(r))dr

(4.5)

+ 1)f2 + _L f 2 (r)dr = -- j Q(f(r))dr

and the boundary conditions f1 (-1) = ff, j = 1,2.

Theorem 4.1. For each pair of positive Maxwellian data f-, f+ and for each C > 0

the boundary value problem (R.) has a solution. The solution f is Hlder continuous on

[-1, 1] with exponent a, (Lipshitz continuous for e < e0(/+)).

Let now f' be fixed and consider a family {ff},>o of solutions to (R,). The functions

f' are extended to (-oo, oo) by setting f' = f- on (-oo,-1) and fe = f+ on (1,oo).

The extended functions are called again ff and satisfy (4.5) for 6, ý2 E (-oo, oo).

Theorem 4.2. Let {f'},>o be a family of extended solutions of(1Z,) taking fixed, positive

Maxwellian data f±. There exists a subsequence {ftn } with E --* 0 and a positive, bounded
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function p(ý) such that

fin 1 - p(ý)

kf2e"( n 2 P(C for a.e. ý E (-0,o00). (4.6)

The function p(Q) is a weak solution of

2f- x<O

OtP P(X,){2f+ x>0

that is
2f- x<O, t>O

p(s) =

S2f+ x > O, t > 0

Proof. The strategy for proving Theorems 4.1 and 4.2 is analogous to the Broadwell case.

The proof is decomposed in three parts.

Part 1. A-priori estimates

Let f be a solution of (7Z,). Using (4.5) it follows that Q(f(-1)) = Q(f(+1)) = 0. Since

Q(f) satisfies the differential equation

d MO f ( )Qf (4.7)

either Q(f) = 0 on (-1,1) or it never vanishes. Hence, the shapes of the components

fl, f2 are restricted as follows:

Cj: Q(f) > 0 on (-1,1). Then fi and f2 are both increasing on (-1,1).

C2: Qkf) < 0 on (-1, 1). Then fi and f2 are both decreasing on (-1, 1).

C3 : Q(f) = 0 on (-1,1). Then fi and f2 are constant functions.
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As a consequence, for ý E [-1, 11

min{fj", f t}< fj < maxff, f)} , j =1,2
(4.8)

TVfj =f - fI I j =1,2.

Next, an argument similar to Lemma 1.3 shows that there are expenents pe, 1 < pe < 00,

and positive constants C, such that

Ilf nl li, :_ C, , j = 1,2. (4.9)

The exponent pe depends on f* and c, it is increasing as c decreases, and there is , 0 =

eo(f±) > 0 so that for e < eo the exponent p, = oo. It follows from (4.9) that solutions of

(TR,) are H6lder continuous (Lipschitz continuous for e < co).

Part 2. The fluid dynamic limit

Let {f },>o be a family of extended solutions to (Re) corresponding to fixed, positive

Maxwellian data f±. By (4.8) and Helly's theorem, there exists a subsequence {f'" } with

c,, - 0 and a function f = (fz, f2) with positive, bounded components fl, f2 of bounded

variation such that fe --+ f pointwise on (-oo, oo). Clearly, f(-) = f for E (-00, -1]

and f(ý) = f+ for E [1,0).

The members of the sequence {f t " } satisfy the identities

+ ) + (fl f2- + 0e' (4.10)1 o
-•(f:"enf:" + f:tnnft") + (ff" nfl" - f:"gnf")' =(

1 (4n2 _e2 t2-

2e
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Identity (4.11) is obtained upon multiplying the first equation (4.2) by (1 + enf•"), the

second by (1 + enf 2l") and adding the resulting equations.

Fix now •, • E [-1, 1] and combine (4.11) with the uniform bounds (4.8) to obtain

-CnC < - j2(f fn 2 - fcn2) (en fcn 2  e enf2--2)dC
4•2 2

-.4j (flen f2tn) d < 0_ 4 ,

and upon passing to the limit e, n 0

(f, _ =f2) 0.

We conclude fi = f2 for a.e. ý E (-oo, oo).

Next, set p = fi + f2. Passing to the limit in (4.10) we see that -•p' = 0 weakly.

Thereforc p(-z) is a wcak solujtion of

2f- x<0
Op=O , p(XO) (4.12)

12f+ x>0

The solution of (4.12) is given by

2f-x 0, t > 0,P = =(-
t 2f+ x>0, t>0.

Remark. It follows from (4.6) and (4.8) that for any 1 _< p < oo

f 1r p

As a matter of fact, since the limiting function p is characterized as the unique solution of

(4.12), the above convergence holds over the entire family {ff},>o as e --+ 0+.
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Part 3. Existence theory for (1Z,).

First, we introduce some notation. Let b(f) (-2fi, 2f2) and define the matrices

A() (•-1) 0 B2f) 2f2
A()0 - (C + 1)] B' 2fl -2f2

Then Q(f) = ½b(f) . f and (4.2) may be written as

4(C)f' = LB(f)f. (4.13)

Let F = (F1 , F 2 ) be a given solution of (iZ,) defined on [-1, 1] and taking boundary val-

ues F(±:) = F± positive, Maxwellian states. By (4.9) the solution F isH6lder continuous.

Any nearby solution f may be written as f = F + p, with the perturbation p = (PI,P2) a

continuous function satisfying
11

A(C)p' = -B(F(C))p + 1B(p)pe2 (4.14)

p(±l) = p,

and p+ = f:: - F'. Since f± and F+ are Maxwellians

b(F±')•- p± + Q(p±') = 0. (4.15)

The first step in proving Theorem 4.1 is to show the following analog of Theorem 3.5.

Theorem 4.3. If the only continuous solution of the homogeneous boundary-value problem

A(C)p =I (F(1))p

(4.16)

p(±l) = 0,

is the trivial solution p = 0, then there exists a positive constant r such that for any data

satisfying (4.15) and Ip+I + Ip-I < r the nonlinear boundary-value (4.14) has a solution.
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Proof. The proof is long, but it follows the same steps as the proof of Theorem 3.5 being

just easier. We only give a rough sketch here.

First, one analyzes the singular linear boundary-value problem

1 1
A()'= -B(F(ý))p + -G(ý) ,

6 e (4.17)

p(±l) =

with p± subject to the restrictions

b(F+) ' p+ + g,(+1) -- b(F-) p- + g2(-1) 0. (4.18)

It turns out that (4.17) admits a unique solution for any data p± subject to (4.18) if and

only if (4.16) possesses only the trivial solution p = 0. Moreover, in that case the solution

p of (4.17) can be estimated by

J1pJ1 < C(Ip+' + 1p-1 + IG11) , (4.19)

where II stands for the sup-norm on [-1, 11.

Next, one applies the contraction mapping principle to a map carrying P to the solution

of (4.17) with G = ½IB(P)P. Given the estimates (4.19), the proof of this part is identical

to the proof of Theorem 3.5. The resulting fixed point is the solution p of (4.14). 1

The second step is to show:

Lemma 4.4. The only continuous solution of the homogeneous boundary-value problem

(4.16) is the trivial p = 0.
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Proof. Suppose that p = (P1,p2) is a nontrivial eigensolution of

1)p' = -b(F(ý)) .p,

(4.20)
-(6 + 1)p' =--b(F(6)) .p,

with p(±l) = 0. Then p also satisfies

[(1 - O)p - (6 + 1)P21' + (PI +P2) = 0,

and integration over any [a, b] C [-1, 11 yields

(1 - b)pI(b) -(1 - a)pl(a) - (b + 1)p 2(b) + (a + 1)p 2(a) + ((PI +p 2 )d6 =0. (4.21)

Consider the curve 7 : P = (PI(6),p2(6)), 6 E [-1, 1], that describes the solution in the

state plane Pi - P2. Since (0, 0) is an equilibrium, - only meets the origin at the singular

points = ±1. The vector field in (4.20) vanishes only on the lines F, (6)pl - F 2(6)p 2 = 0

lying in the first and third quadrants. This, together with the form of (4.20), implies that Y

may only cross the positive p2-axis going from the second to the first quadrant, the positive

pl-axis going from the first to the third, the negative p2 -axis from the fourth to the third,

and finally the negative pl-axis from the third to the second. There are the following, not

mutually exclusive, possibilities to consider: (i) -y crosses the positive p2-axis, (ii) -f crosses

the negative p2 -axis, and (iii) -y starts and concludes at the origin without crossing the

p2-axis.

Case (i): Suppose that p crosses the positive p2-axis at • = a. Then p, (a) = 0, p2(a) > 0.

Also, the curve -y will either cross the positive p1 -axis at some = b, or it will wander
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around in the first quadrant concluding on the origin at • = b = +1. In either case

pl(b) _> 0, p2(b) = 0 and pi(ý) > 0, p2(ý) > 0 for a < ý < b. Identity (4.21) then leads to

a contradiction and that excludes case (i). Case (ii) is similarly excluded by applying the

same argument to (-p), which is again a solution of (4.20).

We conclude that -t starts and concludes at the origin without crossing the pi-axis.

Without loss of generality we may assume that the curve -y lies on the right half plane;

otherwise replace p by (-p) as before. Since pi (-1) = pi(+1) = 0, the mean value theorem

and (4.20) imply there exists 0 E (-1, 1) such that Fi(O)p1 (0) = F 2(O)p2 (0). At 0 the curve

-y lies in the first quadrant. In view of the form of the vector field in (4.20), the curve -Y

starts at the origin at ý = -1, lies in the first quadrant thereafter up to at least ý = 0,

and then either escapes to the second quadrant at some point ý = b, or it concludes at

the origin at ý = b = +1. In either case, pl(b) > 0, p2(b) = 0 and p'(ý) > 0, P2(4) > 0

for -1 < ý < b. Applying (4.21) with a = -1 and b as above, we arrive again at a

contradiction. Therefore, p = 0 on [-1, 1]. I

The last step in proving Theorem 4.1 is to use a continuation argument. Let f =

(fT,f•), f+ = (fj+,f+) be positive Maxwellians, that is fT, ff+,f+ > 0 and fT =

f;, f+ = f+. For p E [0, 11, set

f -(W = f- f+( ) = f - + P(f+ - f-),

which are also positive Maxwellians. Consider the set

C p{/ E [0, 1]: (IZ,) has a solution taking data f-(p), f+(p)}
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Then 0 E C and, by virtue of Theorem 4.3 and Lemma 4.4, C is open.

We proceed to show that C is closed. Let {p,,} be a sequence of points in C such

that p,, --+ p0. Suppose that f1'- are the corresponding solutions of (1Z,) admitting data

f+(p.) and f-(pn). On account of (4.8) and (4.9), the sequence {f n} is precompact

in some H61der space. Therefore a subsequence converges to a limiting function f, 0 , and

a straightforward argument shows that f, 0 is a solution of (1Z,) taking data f+( 1z0 ) and

f-(Ito). Thus C is closed.

We conclude that C = (0, 11 and the proof is complete. g

§5. Appendix: A linear singular equation.

We recor(d here certain properties of the equation

-•P' + 6(F)P h(ý) (5.1)

that are used in the text to study the behavior of solutions near singular points. The

equation is taken in the interval 0 < ý < a with a < 1. The objective is to investigate

regularity properties for solutions, and to study the map that carries h to p.

Throughout, the functions 0 and h are assumed at least continuous on [0, a] with 4

subject to the restrictions:

40(0) > 0la 1()-0(0) 1 d( < oo. (Hi)

The latter assumption is, for instance, satisfied if the function 4 is H61der continuous.
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Use of an integrating factor shows the solution of (5.1) on (0, a] is given by

p(C) =p(a)e- 4 d1 +e- C" h(it-S-)ef-7 dS' (5.2)

Next, certain convenient expressions for the solution are derived. Observe that

)=-' "•d a = (4) <0O ew(=<), (5.3)

where w is defined in terms of the convergent (due to (H 1 )) integral

/o•€(¢ -0(0)
0d(. (5.4)

On account of (5.3) and (5.4), p may be written in the form

p(W) = p(a) (4)0() e-(4)-u(a) + ý0(0) e,'(ý) h(s) s-()-1 e-w(s) ds. (5.5)

An alternative formula for p is obtained by combining (5.5) with the identity

i a
s-00-1 e-w(s) ds =

o [a-4(0) e-w(a) - ý-0(°) e-'() + a s-0(0) e-",(s) O(s) - 0O) ds]"

It reads

p()= h(0) + [p(a) - h(o]()4O) 0 w(o)wa
0(0) 0(0) a

+ ýO(o) ja h(s) - h(0) s_-(0) ew(()_,(B) ds

- a (0) j• !-2(04((s) - 0)1) s-_(0) ew(•)-(s)ds. (5.6)

Formulas (5.5) and (5.6) serve as starting points to produce various estimates for solutions

of (5.1).
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Lemma 5.1. Let € and h be continuous functions on [0, a] satisfying (H1 ). Then

lir p(ý) = h(O)/O(O), (5.7)

p is continuous on [0, a] and satisfies the bound

jp(ý) e-w(ý) I •ý Ip(a) e(a) I + sup Ih(s) e-(s) 1 (5.8)

IP(O• 0<3<a

Proof. Hypothesis (HI) implies that w(ý) --+ 0 as 0 0. Then L'H6pital's rule shows

lim fý h(s)s-4'(°)-' e--(-) ds 1 .rn h(ý) ew(4 ) =
C--0 ý-(0) =(0-) l-0

which together with (5.5) implies (5.7).

Next, combining the estimate

aq

Ip(W) e-'M•j < p(a) e-(a) I + sup Ih(s) e-'(3)I W(0) s-0(t)-l ds)
o<s<.a

obtained directly from (5.5), with the formula

ýO(O) s-0k(°)-1 ds = 1 (I - (Cla)"(°))

we deduce (5.8). *

The next task is to relate the modulus of continuity of 0 and h at • = 0 with the modulus

of continuity of the solution. To this end, assume that for some 0 < 3 < 1 and 0 < -y < 1

the functions 0 and h satisfy

100 '- 0(0)1 <5 < 0 > ý16

(H2)

h(ý) - h(O)5 < h >4

54



on [0, a]; here, the symbols < 0 > and < h > stand for the H6lder constants. We show:

Lemma 5.2. Let 0 and h satisfy (H1 - H2 ). If/3 = y - 1 and 0(0) > 1 then p is Lipshitz

and satisfies the bound

0(0) 0(0)

Otherwise, p is H6lder continuous with exponent any 0 < a <ao := min{1fl, t, 0(0)} and

satisfies for , C e [0, a]

0(0) 0(0)

The constant C depends on < l >,13, -y, a and 0(0), but is independent of a in the region

0<a<1.

Proof. In what follows C will stand for a generic contant exhibiting the aforementioned

dependence. First, the terms in the right hand side of (5.6) are estimated. In view of (5.4)

and (H2)

Iw(•)-w(s)I << 0> I ~' 1dl I - 13 (5.11)

Since a < 1, (5.6) and (5.11) imply for 0 < ý < a

-P(0) h(o)- h Ip(a) - h(0) (a) + W < h > sr-1-() ds)
0h(0) 0(o) a "

< C A ý0(°)( 1 + s-r-1-0(o) + s6-1-0(o) ds),
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where

A:= a'0(0)1P(a) - h(O) h + (0) (5.12)
(0)+ 0(0)

Set now ao = min{/3, y, 0(0)} > 0 and note that 0 < ao _< 1. Using the formula for the

evaluation of the integrals

SS4(o) f ds = °(0) -ln if a = 0(0) (5.13)

1. Ic- WOO) - VIC if a 34 0(0)

we conclude

IPo-h(O) I CA ý'o jln~j if ao = 0(0) frýe[,a. (.40h(O) CA•'°cASo Inlif ao0 < (0)f0= (0)P(- d(0) 1 ,~Ai ~<~0 for •,e [0, a]. (5.14)

The control on the modulus of continuity of p(ý) at • = 0 provides bounds on the

derivative. To show that, rewrite (5.1) as

•p()= qS(•)p(() - h(•)
h(0) h()()

h(0"-) (€(ý) - 0(0)) + 0(0) (p(ý) - (0)) - (h(ý) - h(0))

0(0)0

+ (0(ý) - 0(0)) (p(ý) _()) (5.15)

and use (H2 ) and (5.14) to obtain

IP()I : ICA 4 -o-' IklnI if ao = 0(0) for e(0, a]. (5.16)
( CA(•°- 1  if ao < 0(0) '

We emphasize that the constant C in (5.16) depends solely upon < € >, •, - and upper

bounds for 0(0). All other dependences are incorporated in the constant A in (5.12).

We can now complete the proof of the lemma:
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(i) If 3 = -y = 1 < 0(0) then ao = 1 < 0(0) and (5.9) follows from (5.16).

(ii) In all other cases, fix any 0 < a < &o < 1 and let e, ( e (0, a]. Using H61der's inequality,

we deduce from (5.16)

Ip(X)- p() = I p'(s)dsI

S, ,1-c-
<CA s- (1 + Ilnsl) - ds I• - 01'. (5.17)

Since i < 1, the last integral is finite and (5.10) follows from (5.17) and (5.7). *
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